Physics – Optics
Scientific paper
Oct 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995jgr...10021189w&link_type=abstract
Journal of Geophysical Research, vol. 100, p. 21,189,199
Physics
Optics
31
Breccia, Charge Coupled Devices, Lunar Exploration, Raman Spectroscopy, Pyroxenes, Lunar Rocks, Lunar Soil, Mineralogy, Optical Fibers, Olivine, Laser Beams, Holography, Forsterite
Scientific paper
The sharp, nonoverlapping Raman bands for plagioclase, pyroxene, and olivine would be advantageous for on-surface, active mineralogical analysis of lunar materials. A robust, light-weight, low-power, rover-based Raman spectrometer with a laser exciting source, entirely transmission-mode holographic optics, and a charge-coupled device (CCD) detector could fit within a less than 20 cm cube. A sensor head on the end of an optical fiber bundle that carried the laser beam and returned the scattered radiation could be placed against surfaces at any desired angle by a deployment mechanism; otherwise, the instrument would need no moving parts. A modem micro-Raman spectrometer with its beam broadened (to expand the spot to 50-micrometer diameter) and set for low resolution (7/cm in the 100-1400/cm region relative to 514.5-nm excitation), was used to simulate the spectra anticipated from a rover instrument. We present spectra for lunar mineral grains, less than 1 mm soil fines, breccia fragments, and glasses. From frequencies of olivine peaks, we derived sufficiently precise forsterite contents to correlate the analyzed grains to known rock types and we obtained appropriate forsterite contents from weak signals above background in soil fines and breccias. Peak positions of pyroxenes were sufficiently well determined to distinguish among orthorhombic, monoclinic, and triclinic (pyroxenoid) structures; additional information can be obtained from pyroxene spectra, but requires further laboratory calibration. Plagioclase provided sharp peaks in soil fines and most breccias even when the glass content was high.
Haskin Larry A.
Jolliff Bradley L.
Wang Alian
No associations
LandOfFree
Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1354832