Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2012-04-10
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
12 pages, 8 figures, 2 tables; Monthly Notices of the Royal Astronomical Society, Online Early
Scientific paper
10.1111/j.1365-2966.2012.20807.x
Here we report on observations of the radio magnetar PSR J1622-4950 at frequencies from 1.4 to 17 GHz. We show that although its flux density is varying up to a factor of ~10 within a few days, it has on average decreased by a factor of 2 over the last 700 days. At the same time, timing analysis indicates a trend of decreasing spin-down rate over our entire data set, again of about a factor of 2 over 700 days, but also an erratic variability in the spin-down rate within this time span. Integrated pulse profiles are often close to 100 per cent linearly polarized, but large variations in both the profile shape and fractional polarization are regularly observed. Furthermore, the behaviour of the position angle of the linear polarization is very complex - offsets in both the absolute position angle and the phase of the position angle sweep are often seen and the occasional presence of orthogonal mode jumps further complicates the picture. However, model fitting indicates that the magnetic and rotation axes are close to aligned. Finally, a single pulse analysis has been carried out at four observing frequencies, demonstrating that the wide pulse profile is built up of narrow spikes of emission, with widths that scale inversely with observing frequency. All three of the known radio magnetars seem to have similar characteristics, with highly polarized emission, time-variable flux density and pulse profiles, and with spectral indices close to zero.
Bailes Matthew
Bates S. D.
Bhat N. D. R.
Burgay Marta
Burke-Spolaor Sarah
No associations
LandOfFree
Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622-4950 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622-4950, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622-4950 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-644354