Physics – Geophysics
Scientific paper
Feb 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004rasc...39.1013n&link_type=abstract
Radio Science, Volume 39, Issue 1, CiteID RS1013
Physics
Geophysics
10
Electromagnetics: Antenna Arrays, Electromagnetics: Inverse Scattering, Electromagnetics: Scattering And Diffraction, Exploration Geophysics: Remote Sensing
Scientific paper
A major finding in exploration of Mars is the indication that a large quantity of water has been present on Mars. To discover the distribution of this quantity of water, the Mars Express spacecraft is carrying a spaceborne radar sounder, called Mars Advance Radar for Subsurface and Ionospheric Sounding (MARSIS), in order to map Mars subsurface dielectric characteristics. The returned radar echoes from Mars will contain both surface and subsurface reflection components, but the part of the signal we are interested in is the reflected signal from subsurface layers. To retrieve these weak deep echoes from the radar signal, a signal processing algorithm needs to be developed. In this paper, we present a computationally efficient radar signal simulation based on the use of the Facet Method as a surface modeling scheme. This simulator will be used to validate the MARSIS ground processing software and to support the interpretation of MARSIS data. The first step in the simulation algorithm definition is to model the Mars surface. Many surface modeling methods have been developed and can be found in the literature, but considering the fact that Mars surface is very smooth, the modeling algorithm we have developed uses the Facet Method. In this paper, we show that the Facet Method is an efficient scheme for modeling a relatively smooth surface, such as the Mars' surface. The instrument simulation we define makes strict reference to the MARSIS radar parameters; however, it may be used to model any radar sounder.
Herique Alain
Kofman Wlodek
Nouvel J.-F.
Safaeinili A. A.
No associations
LandOfFree
Radar signal simulation: Surface modeling with the Facet Method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Radar signal simulation: Surface modeling with the Facet Method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radar signal simulation: Surface modeling with the Facet Method will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1836476