Quiver Gauge Theory and Noncommutative Vortices

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

talk by O.L. at the 21st Nishinomiya-Yukawa Memorial Symposium, Kyoto, 15 Nov. 2006

Scientific paper

10.1143/PTPS.171.258

We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant U(k) bundle with a G-equivariant connection over R^{2n}_theta x G/H. The U(k) Donaldson-Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular quiver gauge theory on R^{2n}_theta. Seiberg-Witten monopole equations are particular examples. The noncommutative BPS configurations are formulated with partial isometries, which are obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as D0-branes inside a space-filling brane-antibrane system.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quiver Gauge Theory and Noncommutative Vortices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quiver Gauge Theory and Noncommutative Vortices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quiver Gauge Theory and Noncommutative Vortices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-442114

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.