Physics – Quantum Physics
Scientific paper
2009-10-16
Phys. Rev. A 82, 032101 (2010)
Physics
Quantum Physics
Scientific paper
The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that phonon blockade can serve as a signature of quantum behavior in nanomechanical resonators. In analogy to photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber $s$-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with currently accessible experimental parameters.
Bajer Jiri
Gao Y. B.
Liu Yu-xi
Miranowicz Adam
Nori Franco
No associations
LandOfFree
Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-123606