Physics – Atomic and Molecular Clusters
Scientific paper
2010-07-20
J. Chem. Phys. 130, 024501 (2009)
Physics
Atomic and Molecular Clusters
7 figures. http://www.famaf.unc.edu.ar/series/AFis2005.htm
Scientific paper
We study the nature of the quasiinvariants in nematic 5CB and measure their relaxation times by encoding the multiple quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301 K which is used as a reference compound having only one dipolar quasiinvariant. We show that the evolution of the quantum states during the build up of the quasi-equilibrium state in 5CB prepared under the S condition is similar to the case of adamantane and that their quasi-equilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple quantum coherences on the X basis of even order, in consistency with the truncation inherent in its definition. We exploited the exclusive presence coherences 4, 6, 8, besides 0 and 2 under the W condition to measure the spin-lattice relaxation time T_{W} accurately, so avoiding experimental difficulties that usually impair dipolar order relaxation measurement such as Zeeman contamination at high fields, and also superposition of the different quasiinvariants. This procedure opens the possibility of measuring the spin-lattice relaxation of a quasiinvariant independent of the Zeeman and S reservoirs, so incorporating a new relaxation parameter useful for studying the complex molecular dynamics in mesophases. In fact, we report the first measurement of T_{W} in a liquid crystal at high magnetic fields. The comparison of the obtained value with the one corresponding to a lower field (16 MHz) points out that the relaxation of the W-order strongly depends on the intensity of the external magnetic field, similarly to the case of the S reservoir, indicating that the relaxation of the W-quasiinvariant is also governed by the cooperative molecular motions.
Acosta Rodolfo H.
Bonin C. J.
Buljubasich L.
Gonz\' alez C. E.
Monti G. A.
No associations
LandOfFree
Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-183230