Physics
Scientific paper
May 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009jgrd..11409109h&link_type=abstract
Journal of Geophysical Research, Volume 114, Issue D9, CiteID D09109
Physics
10
Atmospheric Processes: Mesospheric Dynamics, Atmospheric Processes: Tides And Planetary Waves, Atmospheric Processes: General Circulation (1223), Atmospheric Processes: Middle Atmosphere Dynamics (0341, 0342)
Scientific paper
Long-period planetary wave data derived from meteor wind observations recorded over a 12-year period with the SuperDARN radar at Halley, Antarctica, are presented and compared with the phase of the quasi-biennial oscillation (QBO) throughout the equatorial stratosphere. Enhanced planetary wave activity in the Antarctic upper mesosphere is found during the summer months, when the QBO in the equatorial upper stratosphere is westerly, and during the late winter, when the QBO in the upper stratosphere is easterly. These quasi-biennial enhancements in planetary wave activity coincide with a reduction in strength, by up to 30%, of the late-winter eastward winds in the Antarctic upper mesosphere. In addition, when the QBO is in the correct phase for enhanced planetary wave activity in the upper mesosphere above Halley, planetary wave activity measured in the upper mesosphere of the high-latitude Northern Hemisphere is reduced (and vice versa). These results clearly indicate significant interhemispheric propagation of planetary waves from the winter to summer hemispheres. Observational evidence that the stratospheric QBO induces a strong enough QBO in the equatorial upper mesosphere to act as a gate to the interhemispheric propagation of these long-period waves is discussed in light of these results.
Ford A. K. E.
Hibbins Robert E.
Jarvis Martin J.
No associations
LandOfFree
Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-814293