Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2006-02-17
Physics
High Energy Physics
High Energy Physics - Phenomenology
4 pages
Scientific paper
Exact conditions on the clock parameters corresponding to the minimal uncertainty in distance measurement are derived in uniform manner for any number of space time dimensions. The result espouses the holography principle no matter what the number of space time dimensions is. In this context the ADD braneworld model is considered. Some remarks are made on deviation of holography as well as of special relativity at the scales provided by the cosmological constant. We also comment on the potential influence of the background radiation on the uncertainty in length measurement. The presence of unavoidable quantum uncertainty in length measurement results in fluctuations of the black hole thermodynamics that can be interested to address the information loss problem. The quantum corrections to the black hole entropy obtained in various scenarios are imperceptible because of these fluctuations. At the Planck scale the fluctuations destroy the thermodynamic picture of the black hole.
No associations
LandOfFree
Quantum uncertainty in distance measurement: Holography and black hole thermodynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum uncertainty in distance measurement: Holography and black hole thermodynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum uncertainty in distance measurement: Holography and black hole thermodynamics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-471104