Physics – Optics
Scientific paper
Sep 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005spie.5957..190p&link_type=abstract
Integrated Optics: Theory and Applications. Edited by Pustelny, Tadeusz; Lambeck, Paul V.; Gorecki, Christophe. Proceedings of
Physics
Optics
Scientific paper
The work describes multiband photon detectors based on semiconductor micro- and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum Dots-in-a-Well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunneling Quantum Dot Infrared Photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color infrared detector with photoresponse peaks at ~6 and ~17 μm at room temperature will be discussed. A Homojunction or HEterojunction Interfacial Workfunction Internal Photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.
No associations
LandOfFree
Quantum structures for multiband photon detection does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum structures for multiband photon detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum structures for multiband photon detection will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1223446