Quantum Mechanics of Multi-Prong Potentials

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages. LATEX. On request, TOP_DRAW files or hard copies available for 7 figures

Scientific paper

10.1088/0305-4470/28/18/022

We describe the bound state and scattering properties of a quantum mechanical particle in a scalar $N$-prong potential. Such a study is of special interest since these situations are intermediate between one and two dimensions. The energy levels for the special case of $N$ identical prongs exhibit an alternating pattern of non-degeneracy and $(N-1)$ fold degeneracy. It is shown that the techniques of supersymmetric quantum mechanics can be used to generate new solutions. Solutions for prongs of arbitrary lengths are developed. Discussions of tunneling in $N$-well potentials and of scattering for piecewise constant potentials are given. Since our treatment is for general values of $N$, the results can be studied in the large $N$ limit. A somewhat surprising result is that a free particle incident on an $N$-prong vertex undergoes continuously increased backscattering as the number of prongs is increased.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantum Mechanics of Multi-Prong Potentials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantum Mechanics of Multi-Prong Potentials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Mechanics of Multi-Prong Potentials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-176939

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.