Physics – Quantum Physics
Scientific paper
2010-05-16
Phys. Rev. A 79, 053828 (2009)
Physics
Quantum Physics
Scientific paper
We show that quantum-interference phenomena can be realized for the dissipative nonlinear systems exhibiting hysteresis-cycle behavior and quantum chaos. Such results are obtained for a driven dissipative nonlinear oscillator with time-dependent parameters and take place for the regimes of long time intervals exceeding dissipation time and for macroscopic levels of oscillatory excitation numbers. Two schemas of time modulation: (i) periodic variation of the strength of the {\chi}(3) nonlinearity; (ii) periodic modulation of the amplitude of the driving force, are considered. These effects are obtained within the framework of phase-space quantum distributions. It is demonstrated that the Wigner functions of oscillatory mode in both bistable and chaotic regimes acquire negative values and interference patterns in parts of phase-space due to appropriately time-modulation of the oscillatory nonlinear dynamics. It is also shown that the time-modulation of the oscillatory parameters essentially improves the degree of sub-Poissonian statistics of excitation numbers.
Gevorgyan Tigran V.
Kryuchkyan Gagik Yu.
Shahinyan A. R.
No associations
LandOfFree
Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillator does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillator will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-672656