Physics – Quantum Physics
Scientific paper
2012-04-17
Physics
Quantum Physics
v1: Latex, 4 and half pages, one fig; v2: 9 pages including 4-page appendix
Scientific paper
Uncertainty relations capture the essence of the inevitable randomness associated with the outcomes of two incompatible quantum measurements. Recently, Berta et al. have shown that the lower bound on the uncertainties of the measurement outcomes depends on the correlations between the observed system and an observer who possesses a quantum memory. If the system is maximally entangled with its memory, the outcomes of two incompatible measurements made on the system can be predicted precisely. Here, we obtain a new uncertainty relation that tightens the lower bound of Berta et al., by incorporating an additional term that depends on the quantum discord and the classical correlations of the joint state of the observed system and the quantum memory. We discuss several examples of states for which our new lower bound is tighter than the bound of Berta et al. On the application side, we discuss the relevance of our new inequality for the security of quantum key distribution and show that it can be used to provide bounds on the distillable common randomness and the entanglement of formation of bipartite quantum states.
Pati Arun Kumar
Rajagopal A. K.
Sudha
Usha Devi A. R.
Wilde Mark M.
No associations
LandOfFree
Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-290079