Quantum Compiling with Approximation of Multiplexors

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Ver1:18 pages (files: 1 .tex, 1 .sty, 7 .eps); Ver2:26 pages (files: 1 .tex, 1 .sty, 7 .eps, 7 .m) Ver2 = Ver1 + new material,

Scientific paper

A quantum compiling algorithm is an algorithm for decomposing ("compiling") an arbitrary unitary matrix into a sequence of elementary operations (SEO). Suppose $U_{in}$ is an $\nb$-bit unstructured unitary matrix (a unitary matrix with no special symmetries) that we wish to compile. For $\nb>10$, expressing $U_{in}$ as a SEO requires more than a million CNOTs. This calls for a method for finding a unitary matrix that: (1)approximates $U_{in}$ well, and (2) is expressible with fewer CNOTs than $U_{in}$. The purpose of this paper is to propose one such approximation method. Various quantum compiling algorithms have been proposed in the literature that decompose an arbitrary unitary matrix into a sequence of U(2)-multiplexors, each of which is then decomposed into a SEO. Our strategy for approximating $U_{in}$ is to approximate these intermediate U(2)-multiplexors. In this paper, we will show how one can approximate a U(2)-multiplexor by another U(2)-multiplexor that is expressible with fewer CNOTs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantum Compiling with Approximation of Multiplexors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantum Compiling with Approximation of Multiplexors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Compiling with Approximation of Multiplexors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-152561

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.