Physics – Quantum Physics
Scientific paper
2000-04-04
Physics
Quantum Physics
10 pages. To appear in STOC 2000 (Proceedings of the Thirty Second Annual ACM Symposium on Theory Of Computing.)
Scientific paper
Unconditionally secure bit commitment and coin flipping are known to be impossible in the classical world. Bit commitment is known to be impossible also in the quantum world. We introduce a related new primitive - {\em quantum bit escrow}. In this primitive Alice commits to a bit $b$ to Bob. The commitment is {\em binding} in the sense that if Alice is asked to reveal the bit, Alice can not bias her commitment without having a good probability of being detected cheating. The commitment is {\em sealing} in the sense that if Bob learns information about the encoded bit, then if later on he is asked to prove he was playing honestly, he is detected cheating with a good probability. Rigorously proving the correctness of quantum cryptographic protocols has proved to be a difficult task. We develop techniques to prove quantitative statements about the binding and sealing properties of the quantum bit escrow protocol. A related primitive we construct is a quantum biased coin flipping protocol where no player can control the game, i.e., even an all-powerful cheating player must lose with some constant probability, which stands in sharp contrast to the classical world where such protocols are impossible.
Aharonov Dorit
Ta-Shma Amnon
Vazirani Umesh
Yao Andrew
No associations
LandOfFree
Quantum Bit Escrow does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum Bit Escrow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Bit Escrow will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-73329