Quantifying the connectivity of a network: The network correlation function method

Physics – Computational Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 figures

Scientific paper

10.1103/PhysRevE.80.046104

Networks are useful for describing systems of interacting objects, where the nodes represent the objects and the edges represent the interactions between them. The applications include chemical and metabolic systems, food webs as well as social networks. Lately, it was found that many of these networks display some common topological features, such as high clustering, small average path length (small world networks) and a power-law degree distribution (scale free networks). The topological features of a network are commonly related to the network's functionality. However, the topology alone does not account for the nature of the interactions in the network and their strength. Here we introduce a method for evaluating the correlations between pairs of nodes in the network. These correlations depend both on the topology and on the functionality of the network. A network with high connectivity displays strong correlations between its interacting nodes and thus features small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express them as matrix elements in the correlation matrix. From this information one can plot the correlation function for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio between this correlation length and the average path length of the network. Using this method we distinguish between a topological small world and a functional small world, where the latter is characterized by long range correlations and high connectivity. Clearly, networks which share the same topology, may have different connectivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic networks, but can be readily generalized to other types of networks.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantifying the connectivity of a network: The network correlation function method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantifying the connectivity of a network: The network correlation function method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantifying the connectivity of a network: The network correlation function method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-720573

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.