Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2009-11-30
JHEP 08 (2010) 121
Physics
High Energy Physics
High Energy Physics - Phenomenology
44 pages, 16 figures. Major revision for JHEP, corrected an error in Eq. 5.1, comments added
Scientific paper
10.1007/JHEP08(2010)121 10.1007/
We consider the possibility that the Higgs boson can act as a link to a hidden sector in the context of pure-glue hidden valley models. In these models the standard model is weakly coupled, through loops of heavy messengers fields, to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills theory. Such a hidden sector contains several metastable hidden glueballs. In this work we shall extend earlier results on hidden valleys to include couplings of the messengers to the standard model Higgs sector. The effective interactions at one-loop couple the hidden gluons to the standard model particles through the Higgs sector. These couplings in turn induce hidden glueball decays to fermion pairs, or cascade decays with multiple Higgs emission. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. We find that most of the operators considered in this paper are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC.
No associations
LandOfFree
Pure-glue hidden valleys through the Higgs portal does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Pure-glue hidden valleys through the Higgs portal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pure-glue hidden valleys through the Higgs portal will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-149214