Computer Science – Performance
Scientific paper
Oct 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011epsc.conf.1101a&link_type=abstract
EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. http://meetings.copernicus.org/epsc-dps2011, p.1101
Computer Science
Performance
Scientific paper
Rosetta is the European Space Agency 'Planetary Cornerstone' mission intended to solve many of the unanswered questions surrounding the small bodies of the Solar System. Launched in March 2004 it is now over halfway through its decade long cruise, leading up to entering orbit around the nucleus of comet 67P/Churyumov-Gerasimenko in mid-2014. To date, this cruise has included three gravitational assist manoeuvres using Earth and one such manoeuvre using the gravity well of Mars. In addition, targeted flybys of two asteroids have returned a plethora of data to be compared with the comet observations to come. These flybys were of the 5.3 km diameter E-type asteroid 2867 Šteins on September 5th 2008, and a similar 3,162 km flyby of the 100 km diameter asteroid 21 Lutetia on July 10th 2010, the focus of this work. Recent ground based observations of the main belt asteroid 24 Themis have shown this body to have an organic-rich surface with exposed water ice [1]. It is also known that there at least four main belt comets - comets residing within the main belt, the prototype being 133P/Elst-Pizarro - and there are likely to be many more such bodies undergoing lower levels of cometary activity yet to be discovered [2]. The once clear-cut differentiation between volatile rich comets and volatile depleted asteroids has been somewhat eroded by these findings. Ptolemy is a miniature chemical analysis laboratory aboard the Rosetta lander 'Philae', and is intended to determine the chemical and isotopic composition of cometary material sourced from beneath, on and above the surface of the target comet. Samples are taken from the Sampler, Drill and Distribution system (SD2) and are then processed in a chemical preparation suite before delivery to a three channel gas chromatograph (GC). Elution products from the GC are passed to a quadrupole ion trap mass spectrometer for detection and quantitation [3]. As well as analysing solid samples, Ptolemy can passively adsorb coma material onto CarbosphereTM molecular sieve contained within one of the 26 SD2 sample ovens for later thermal release and analysis. Ptolemy can also make direct 'sniff' detections of the current spacecraft environment, bypassing the sample inlet and GC system, instead directly analyzing the inside of the mass spectrometer which is connected to space via a vent pipe. Based on the demonstrated instrument performance (a sensitivity of one ion count per 1x10-11 mbar for a particular mass), and knowing that the state of knowledge concerning the volatile composition and outgassing nature of main belt asteroids is only loosely constrained, it was decided to attempt to detect any extant, tenuous exosphere surrounding asteroid 21 Lutetia during the 2010 flyby opportunity. This body was thought to have both carbonaceous material and hydrated minerals on its surface - potential sources of outgassing - and therefore worthwhile of study [4].
Andrews D. J.
Barber Simeon J.
Leese Mark R.
Morgan G. H.
Morse Andrew D.
No associations
LandOfFree
Ptolemy: in situ mass spectrometry during the Rosetta flyby of 21 Lutetia, and implications for future missions. does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ptolemy: in situ mass spectrometry during the Rosetta flyby of 21 Lutetia, and implications for future missions., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ptolemy: in situ mass spectrometry during the Rosetta flyby of 21 Lutetia, and implications for future missions. will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1482641