Physics – Quantum Physics
Scientific paper
2007-07-26
Nature 448, 23 (2007) 889
Physics
Quantum Physics
Scientific paper
10.1038/nature06057
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by measuring non-destructively the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.
Bernu Julien
Brune Michel
Deléglise Samuel
Gleyzes Sébastien
Guerlin Christine
No associations
LandOfFree
Progressive field-state collapse and quantum non-demolition photon counting does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Progressive field-state collapse and quantum non-demolition photon counting, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Progressive field-state collapse and quantum non-demolition photon counting will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-40589