Mathematics – Logic
Scientific paper
May 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006m%26ps...41..681z&link_type=abstract
Meteoritics, vol. 41, Issue 5, p.681-688
Mathematics
Logic
4
Scientific paper
We used high-resolution transmission electron microscopy (HRTEM), electron tomography, electron energy-loss spectroscopy (EELS), and energy-dispersive spectroscopy (EDS) to investigate the structure and composition of polyhedral serpentine grains that occur in the matrices and fine-grained rims of the Murchison, Mighei, and Cold Bokkeveld CM chondrites. The structure of these grains is similar to terrestrial polygonal serpentine, but the data show that some have spherical or subspherical, rather than cylindrical morphologies. We therefore propose that the term polyhedral rather than polygonal be used to describe this material. EDS shows that the polyhedral grains are rich in Mg with up to 8 atom% Fe. EELS indicates that 70% of the Fe occurs as Fe3+. Alteration of cronstedtite on the meteorite parent body under relatively oxidizing conditions is one probable pathway by which the polyhedral material formed. The polyhedral grains are the end-member serpentine in a mineralogic alteration sequence for the CM chondrites.
Buseck Peter R.
Dódony István
Friedrich Heiner
Garvie Laurence A. J.
Stroud Rhonda M.
No associations
LandOfFree
Polyhedral serpentine grains in CM chondrites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Polyhedral serpentine grains in CM chondrites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyhedral serpentine grains in CM chondrites will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1009689