Physics
Scientific paper
May 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgre..11500e17t&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue E12, CiteID E00E17
Physics
11
Planetary Sciences: Solid Surface Planets: Atmospheres (0343, 1060), Planetary Sciences: Solid Surface Planets: Meteorology (3346), Planetary Sciences: Solid Surface Planets: Polar Regions, Planetary Sciences: Solid Surface Planets: Remote Sensing, Planetary Sciences: Solid Surface Planets: Instruments And Techniques
Scientific paper
The Phoenix and Mars Reconnaissance Orbiter (MRO) missions collaborated in an unprecedented campaign to observe the northern polar region summer atmosphere throughout the Phoenix mission (25 May to 2 November 2008; Ls = 76°-150°) and slightly beyond (˜Ls = 158°). Five atmospherically related campaigns were defined a priori and were executed on 37 separate Martian days (sols). Phoenix and MRO observed the atmosphere nearly simultaneously. We describe the observation strategy and history, the participating experiments, and some initial results. We find that there is general agreement between measurements from different instruments and platforms and that complementary measurements provide a consistent picture of the atmosphere. Seasonal water abundance behavior matches with historical measurements. Winds aloft, as measured by cloud motions, showed the same seasonally consistent, diurnal rotation as the winds measured at the lander, during the first part of the mission (Ls = 76°-118°). A diurnal cycle recorded from Ls ˜ 108.3°-109.1°, in which a dust front was approaching the Phoenix Lander, is examined in detail. Cloud heights measured on subsequent orbits showed that in areas of active lifting, dust can be lofted quite high in the atmosphere, doubling in height over 2 h. The combination of experiments also revealed that there were discrete vertical layers of water ice and dust. Water vapor column abundances compared to near-surface water vapor pressure indicate that water is not well mixed from the surface to a cloud condensation height and that the depth of the layer that exchanges diurnally with the surface is 0.5-1 km.
Bass Deborah
Cantor Bruce
Daubar Ingrid
Dickinson Cameron
Fisher David
No associations
LandOfFree
Phoenix and MRO coordinated atmospheric measurements does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Phoenix and MRO coordinated atmospheric measurements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phoenix and MRO coordinated atmospheric measurements will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-794815