Physics – Chemical Physics
Scientific paper
2009-05-11
J. Chem. Phys. 131, 024111 (2009)
Physics
Chemical Physics
14 pages, 8 figures, 6 tables
Scientific paper
A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of 60 at 500 K. We describe the implementation of the methodology in the molecular dynamics package Amber 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation, and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering and coworkers, confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-$^2$H$_2$)methylene-11,11a-dihydro-12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-$^2$H$_2$)methylenebicyclo[4.4.0]dec-1-ene.
Vanicek Jiri
Zimmermann Tomas
No associations
LandOfFree
Path integral evaluation of equilibrium isotope effects does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Path integral evaluation of equilibrium isotope effects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Path integral evaluation of equilibrium isotope effects will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-701880