Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters

Physics – Data Analysis – Statistics and Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Accepted manuscript, to appear in Monthly Weather Review

Scientific paper

This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that, the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. We show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an "ensemble of Kalman filters" operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, we consider the construction of the PKF through an "ensemble" of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). We show that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, we also introduce a re-sampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-703095

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.