Biology – Quantitative Biology – Molecular Networks
Scientific paper
2009-05-14
Proc. Conf. CENICS 2009, eds. K. B. Kent et al. (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2009), pages 1-7
Biology
Quantitative Biology
Molecular Networks
7 pages in PDF
Scientific paper
10.1109/CENICS.2009.8
Biochemical computing attempts to process information with biomolecules and biological objects. In this work we review our results on analysis and optimization of single biochemical logic gates based on enzymatic reactions, and a network of three gates, for reduction of the "analog" noise buildup. For a single gate, optimization is achieved by analyzing the enzymatic reactions within a framework of kinetic equations. We demonstrate that using co-substrates with much smaller affinities than the primary substrate, a negligible increase in the noise output from the logic gate is obtained as compared to the input noise. A network of enzymatic gates is analyzed by varying selective inputs and fitting standardized few-parameters response functions assumed for each gate. This allows probing of the individual gate quality but primarily yields information on the relative contribution of the gates to noise amplification. The derived information is then used to modify experimental single gate and network systems to operate them in a regime of reduced analog noise amplification.
Arugula Mary A.
Halamek Jan
Katz Evgeny
Melnikov Dmitriy
Pita Marcos
No associations
LandOfFree
Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimization of Enzymatic Logic Gates and Networks for Noise Reduction and Stability will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-399742