Optimal signal processing in small stochastic biochemical networks

Biology – Quantitative Biology – Molecular Networks

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

41 pages 7 figures, 5 tables

Scientific paper

We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we may do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the "cross-talk" dilemma as well as the previously unexplained observation that transcription factors which undergo proteolysis are more likely to be auto-repressive.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optimal signal processing in small stochastic biochemical networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optimal signal processing in small stochastic biochemical networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal signal processing in small stochastic biochemical networks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-531438

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.