Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

22 pages, 6 figures Addendum: 11 pages, 6 figures

Scientific paper

10.1088/1367-2630/13/6/065020

We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10^6 Bose-condensed Rb-87 atoms. The optical trap allows us to couple the |F =1, mF =0>\rightarrow |F =2, mF =0> clock states using a single photon 6.8GHz microwave transition, while state selective readout is achieved with absorption imaging. Interference fringes with contrast approaching 100% are observed for short evolution times. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10^6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and outline the improvements that can be made. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise limited, large atom number BEC-based interferometer. In an addendum to the original paper, we attribute our inability to observe quantum projection noise to the stability of our microwave oscillator and background magnetic field. Numerical simulations of the Gross-Pitaevskii equations for our system show that dephasing due to spatial dynamics driven by interparticle interactions account for much of the observed decay in fringe visibility at long interrogation times. The simulations show good agreement with the experimental data when additional technical decoherence is accounted for, and suggest that the clock states are indeed immiscible. With smaller samples of 5 \times 10^4 atoms, we observe a coherence time of {\tau} = (1.0+0.5-0.3) s.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-656588

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.