Physics
Scientific paper
Nov 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007apphb..89..167s&link_type=abstract
Applied Physics B, Volume 89, Issue 2-3, pp. 167-176
Physics
18
Scientific paper
We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7×10-16, making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)=1 064 721 609 899 145.30(69) Hz.
Bergquist James C.
Delany M. J.
Diddams Scott A.
Fortier Tara M.
Heavner Thomas P.
No associations
LandOfFree
Optical-to-microwave frequency comparison with fractional uncertainty of 10-15 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optical-to-microwave frequency comparison with fractional uncertainty of 10-15, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical-to-microwave frequency comparison with fractional uncertainty of 10-15 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1697143