Physics – Plasma Physics
Scientific paper
May 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001jgr...106.8233t&link_type=abstract
Journal of Geophysical Research, Volume 106, Issue A5, p. 8233-8252
Physics
Plasma Physics
64
Solar Physics, Astrophysics, And Astronomy: Coronal Holes, Space Plasma Physics, Space Plasma Physics: Transport Processes, Space Plasma Physics: Wave/Particle Interactions
Scientific paper
The preferential heating and acceleration of O+5 ions, as observed by Ultraviolet Coronagraph Spectrometer (UVCS) on Solar and Heliospheric Observatory (SOHO) [Kohl et al., 1998] in the solar coronal holes have been interpreted and modeled by invoking wave-particle cyclotron resonance [Cranmer et al., 1999a, 1999b]. However, in the model of Cranmer et al. [1999a, 1999b] and in other subsequent models the assumption of a rigid slope of the wave spectrum was made in calculating the wave energy absortion by the different ion species. In the present paper it is shown that a self-consistent treatment of the wave damping and absorption is necessary and leads to substantially different results. On the basis of quasi-linear theory, the interaction between the ions and the ion-cyclotron waves [Marsch et al., 1982a; Marsch, 1998] is studied. The total energy conservation equation, including the kinetic energy of the resonant particles and the wave energy, is derived and discussed in detail. The spectral evolution equation for cyclotron waves, when being controlled by the wave growth/damping rate and WKB effects, is solved self-consistently together with the full set of anisotropic multifluid equations for the ions including the cyclotron-resonance wave heating and acceleration rates. From the numerical results we reach the following conclusions: (1) It is physically questionable to use a spectrum with a fixed spectral slope near the cyclotron resonance when one calculates the partition of wave energy among the different ionic species and the kinetic degrees of freedom parallel and perpendicular to the magnetic field. This assumption neglects the important effects of wave absorption and the concurrent reshaping of the wave spectrum, and thus leads in the dissipation domain to extremely low amplitudes of the waves and to difficulties in supplying enough energy to balance the wave absorption at the cyclotron resonances. (2) If the spectrum is allowed to evolve self-consistently and concurrently with the particles' heating and acceleration through wave absorption, such a high perpendicular temperature and corresponding large temperature anisotropy as observed by UVCS do not occur or cannot be maintained. We conclude that the UVCS oxygen ion observations have not yet been explained satisfactorily by the cyclotron-resonance theory.
Marsch Eckart
Tu Chia-Ying
No associations
LandOfFree
On cyclotron wave heating and acceleration of solar wind ions in the outer corona does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On cyclotron wave heating and acceleration of solar wind ions in the outer corona, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On cyclotron wave heating and acceleration of solar wind ions in the outer corona will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-942004