On admissible motions in a given space-time

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Field Theory (Physics), Kinematics, Relativity, Space-Time Functions, Tensor Analysis, Continuum Mechanics, Group Velocity, Partial Differential Equations

Scientific paper

The extent to which the kinematic characteristics of the motion of a continuum in a given space-time can be fixed a priori so that the existence of a four-velocity field is ensured is examined. It is assumed that the vorticity tensor, the expansion tensor and the four-acceleration fields, which together determine the covariant derivative of the velocity field, are known, while the velocity field is unknown. The problem is thus reduced to the determination of the integrability conditions of a system of partial differential equations for the fields of the four-acceleration, the vorticity tensor and the expansion tensor. An auxiliary congruence of time-like world lines parameterized with respect to the proper time is then introduced to allow a relative three-dimensional description of the motion of the continuum, thus reducing the problem to the analysis of a space-time manifold carrying the flows of time-like world lines describing the motion and the auxiliary congruence.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On admissible motions in a given space-time does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On admissible motions in a given space-time, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On admissible motions in a given space-time will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1446692

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.