On a Generalized Kepler-Coulomb System: Interbasis Expansions

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages, Latex, LYCEN 9415

Scientific paper

This paper deals with a dynamical system that generalizes the Kepler-Coulomb system and the Hartmann system. It is shown that the Schr\"odinger equation for this generalized Kepler-Coulomb system can be separated in prolate spheroidal coordinates. The coefficients of the interbasis expansions between three bases (spherical, parabolic and spheroidal) are studied in detail. It is found that the coefficients for the expansion of the parabolic basis in terms of the spherical basis, and vice-versa, can be expressed through the Clebsch-Gordan coefficients for the group SU(2) analytically continued to real values of their arguments. The coefficients for the expansions of the spheroidal basis in terms of the spherical and parabolic bases are proved to satisfy three-term recursion relations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On a Generalized Kepler-Coulomb System: Interbasis Expansions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On a Generalized Kepler-Coulomb System: Interbasis Expansions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On a Generalized Kepler-Coulomb System: Interbasis Expansions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-169628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.