Observations of OH and HO2 radicals in coastal Antarctica

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3

Scientific paper

OH and HO2 radical concentrations have been measured in the boundary layer of coastal Antarctica for a six-week period during the austral summer of 2005. The measurements were performed at the British Antarctic Survey's Halley Research Station (75° 35'S, 26° 19'W), using the technique of on-resonance laser-induced fluorescence to detect OH, with HO2 measured following chemical conversion through addition of NO. The mean radical levels were 3.9×105 molecule cm-3 for OH, and 0.76 ppt for HO2 (ppt denotes parts per trillion, by volume or pmol mol-1). Typical maximum (local noontime) levels were 7.9×105 molecule cm-3 and 1.50 ppt for OH and HO2 respectively. The main sources of HOx were photolysis of O3 and HCHO, with potentially important but uncertain contributions from HONO and higher aldehydes. Of the measured OH sinks, reaction with CO and CH4 dominated, however comparison of the observed OH concentrations with those calculated via the steady state approximation indicated that additional co-reactants were likely to have been present. Elevated levels of NOx resulting from snowpack photochemistry contributed to HOx cycling and enhanced levels of OH, however the halogen oxides IO and BrO dominated the CH3O2-HO2-OH conversion in this environment, with associated ozone destruction.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Observations of OH and HO2 radicals in coastal Antarctica does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Observations of OH and HO2 radicals in coastal Antarctica, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Observations of OH and HO2 radicals in coastal Antarctica will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-734624

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.