Physics – Mathematical Physics
Scientific paper
2009-09-05
Physics
Mathematical Physics
25 pages, 15 figures
Scientific paper
The small dispersion limit of solutions to the Camassa-Holm (CH) equation is characterized by the appearance of a zone of rapid modulated oscillations. An asymptotic description of these oscillations is given, for short times, by the one-phase solution to the CH equation, where the branch points of the corresponding elliptic curve depend on the physical coordinates via the Whitham equations. We present a conjecture for the phase of the asymptotic solution. A numerical study of this limit for smooth hump-like initial data provides strong evidence for the validity of this conjecture. We present a quantitative numerical comparison between the CH and the asymptotic solution. The dependence on the small dispersion parameter $\epsilon$ is studied in the interior and at the boundaries of the Whitham zone. In the interior of the zone, the difference between CH and asymptotic solution is of the order $\epsilon$, at the trailing edge of the order $\sqrt{\epsilon}$ and at the leading edge of the order $\epsilon^{1/3}$. For the latter we present a multiscale expansion which describes the amplitude of the oscillations in terms of the Hastings-McLeod solution of the Painlev\'e II equation. We show numerically that this multiscale solution provides an enhanced asymptotic description near the leading edge.
Abenda Simonetta
Grava Tamara
Klein Ch.
No associations
LandOfFree
Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-161214