Computer Science – Numerical Analysis
Scientific paper
Jul 1980
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1980apj...239..166s&link_type=abstract
Astrophysical Journal, Part 1, vol. 239, July 1, 1980, p. 166-172.
Computer Science
Numerical Analysis
69
Gravitational Collapse, Interstellar Gas, Interstellar Magnetic Fields, Magnetic Clouds, Magnetohydrodynamics, Plasma Clouds, Protostars, Stellar Evolution, Field Strength, Gas Density, Mathematical Models, Numerical Analysis
Scientific paper
Results of the first self-consistent numerical calculations of the dynamic collapse of a magnetized protostellar gas cloud are presented. Symmetry about an axis parallel to the initial magnetic field direction has been assumed, so that the calculations could be performed on a two-dimensional grid. Also, the cloud was taken to be nonrotating and isothermal, and the magnetic field was assumed to remain frozen in to the gas. As starting models for the calculations, gas spheres with uniform density and magnetic field were used. The time evolution of the clouds has been calculated for roughly two initial free-fall times, at which point the central density has increased by a factor of approximately 10,000 to 1,000,000. Several such calculations have been performed for different values of the cloud's initial thermal, magnetic, and gravitational energies. In virtually all cases it is found that, once a flattened core forms in the cloud, the central magnetic field strength, B, varies with gas density, rho, according to (d log B/d log rho) = 1/2. This behavior is independent of the initial energy ratios mentioned above. It is also found that the magnetic field is able to prevent completely the collapse of part of the outer envelope of the cloud.
Black David C.
Scott Eugene Howard
No associations
LandOfFree
Numerical calculations of the collapse of nonrotating, magnetic gas clouds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical calculations of the collapse of nonrotating, magnetic gas clouds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical calculations of the collapse of nonrotating, magnetic gas clouds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-803333