Normal and anomalous geomagnetic fields separated by solving the eigenvalue problem

Computer Science – Sound

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Eigenvalues, Geomagnetism, Magnetic Anomalies, Atmospheric Sounding, Magnetic Variations, Matrices (Mathematics), Nonuniform Magnetic Fields, Orthogonal Functions, Space-Time Functions

Scientific paper

The components of the geomagnetic field variations are represented as a sum of terms formed by products of two orthogonal functions which depend purely on the time and space co-ordinates. The systems of the orthogonal functions are obtained by solving the eigenvalue problem for a matrix corresponding to the data of a specific variation on several permanent observatories or temporary field stations. In this way, variation fields are resolved into normal and anomalous parts corresponding to individual eigenvalues. This approach was tested on the Sq data from 44 observatories.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Normal and anomalous geomagnetic fields separated by solving the eigenvalue problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Normal and anomalous geomagnetic fields separated by solving the eigenvalue problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Normal and anomalous geomagnetic fields separated by solving the eigenvalue problem will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1256832

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.