Physics
Scientific paper
Nov 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011soph..tmp..374v&link_type=abstract
Solar Physics, Online First
Physics
2
Active Regions, Magnetic Fields, Magnetic Field, Photosphere, Corona
Scientific paper
We study the flux emergence process in NOAA active region 11024, between 29 June and 7 July 2009, by means of multi-wavelength observations and nonlinear force-free extrapolation. The main aim is to extend previous investigations by combining, as much as possible, high spatial resolution observations to test our present understanding of small-scale (undulatory) flux emergence, whilst putting these small-scale events in the context of the global evolution of the active region. The combination of these techniques allows us to follow the whole process, from the first appearance of the bipolar axial field on the east limb, until the buoyancy instability could set in and raise the main body of the twisted flux tube through the photosphere, forming magnetic tongues and signatures of serpentine field, until the simplification of the magnetic structure into a main bipole by the time the active region reaches the west limb. At the crucial time of the main emergence phase high spatial resolution spectropolarimetric measurements of the photospheric field are employed to reconstruct the three-dimensional structure of the nonlinear force-free coronal field, which is then used to test the current understanding of flux emergence processes. In particular, knowledge of the coronal connectivity confirms the identity of the magnetic tongues as seen in their photospheric signatures, and it exemplifies how the twisted flux, which is emerging on small scales in the form of a sea-serpent, is subsequently rearranged by reconnection into the large-scale field of the active region. In this way, the multi-wavelength observations combined with a nonlinear force-free extrapolation provide a coherent picture of the emergence process of small-scale magnetic bipoles, which subsequently reconnect to form a large-scale structure in the corona.
Baker Daniel
Démoulin Pascal
Fuhrmann Marcel
Green Lucie M.
Valori Gherardo
No associations
LandOfFree
Nonlinear Force-Free Extrapolation of Emerging Flux with a Global Twist and Serpentine Fine Structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonlinear Force-Free Extrapolation of Emerging Flux with a Global Twist and Serpentine Fine Structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear Force-Free Extrapolation of Emerging Flux with a Global Twist and Serpentine Fine Structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1564433