Physics – Plasma Physics
Scientific paper
2009-10-29
Phys. Rev. E 81, 056406 (2010)
Physics
Plasma Physics
16 one column pages, 11 figures, Abstract and Sec. I, extended, Sec. VIII modified, Phys. Rev. E in press
Scientific paper
10.1103/PhysRevE.81.056406
New non-linear, spatially periodic, long wavelength electrostatic modes of an electron fluid oscillating against a motionless ion fluid (Langmuir waves) are given, with viscous and resistive effects included. The cold plasma approximation is adopted, which requires the wavelength to be sufficiently large. The pertinent requirement valid for large amplitude waves is determined. The general non-linear solution of the continuity and momentum transfer equations for the electron fluid along with Poisson's equation is obtained in simple parametric form. It is shown that in all typical hydrogen plasmas, the influence of plasma resistivity on the modes in question is negligible. Within the limitations of the solution found, the non-linear time evolution of any (periodic) initial electron number density profile n_e(x, t=0) can be determined (examples). For the modes in question, an idealized model of a strictly cold and collisionless plasma is shown to be applicable to any real plasma, provided that the wavelength lambda >> lambda_{min}(n_0,T_e), where n_0 = const and T_e are the equilibrium values of the electron number density and electron temperature. Within this idealized model, the minimum of the initial electron density n_e(x_{min}, t=0) must be larger than half its equilibrium value, n_0/2. Otherwise, the corresponding maximum n_e(x_{max},t=tau_p/2), obtained after half a period of the plasma oscillation blows up. Relaxation of this restriction on n_e(x, t=0) as one decreases lambda, due to the increase of the electron viscosity effects, is examined in detail. Strong plasma viscosity is shown to change considerably the density profile during the time evolution, e.g., by splitting the largest maximum in two.
Infeld Eryk
Skorupski Andrzej A.
No associations
LandOfFree
Nonlinear Electron Oscillations in a Viscous and Resistive Plasma does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonlinear Electron Oscillations in a Viscous and Resistive Plasma, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear Electron Oscillations in a Viscous and Resistive Plasma will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-405512