Physics – Mathematical Physics
Scientific paper
2010-04-06
Physics
Mathematical Physics
minor changes, to appear in Pierre Duclos memorial issue of J. Phys. A: Math. Theor
Scientific paper
Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in case of Kirchhoff or anti-Kirchhoff conditions, while for graphs without permutation numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight helping to understand what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with nonequal edge weights.
Davies Brian E.
Exner Pavel
Lipovsky Jiri
No associations
LandOfFree
Non-Weyl asymptotics for quantum graphs with general coupling conditions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Non-Weyl asymptotics for quantum graphs with general coupling conditions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-Weyl asymptotics for quantum graphs with general coupling conditions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-57556