Physics – Atomic and Molecular Clusters
Scientific paper
2012-01-20
Physics
Atomic and Molecular Clusters
5 pages, 4 figures, 1 table
Scientific paper
Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $\mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
Chen Xi
Häkkinen Hannu
Strange Mikkel
No associations
LandOfFree
Non-magnetic and magnetic thiolate-protected Au25 superatoms on Cu(111), Ag(111) and Au(111) surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Non-magnetic and magnetic thiolate-protected Au25 superatoms on Cu(111), Ag(111) and Au(111) surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-magnetic and magnetic thiolate-protected Au25 superatoms on Cu(111), Ag(111) and Au(111) surfaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-320734