Non-Hermitian spectra and Anderson localization

Physics – Mathematical Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 10 figures

Scientific paper

10.1088/1751-8113/42/26/265204

The spectrum of exponents of the transfer matrix provides the localization lengths of Anderson's model for a particle in a lattice with disordered potential. I show that a duality identity for determinants and Jensen's identity for subharmonic functions, give a formula for the spectrum in terms of eigenvalues of the Hamiltonian with non-Hermitian boundary conditions. The formula is exact; it involves an average over a Bloch phase, rather than disorder. A preliminary investigation of non-Hermitian spectra of Anderson's model in D=1,2 and on the smallest exponent is presented.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Non-Hermitian spectra and Anderson localization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Non-Hermitian spectra and Anderson localization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-Hermitian spectra and Anderson localization will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-29881

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.