Noise cross-correlation sensitivity kernels

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7

Interferometry, Seismic Tomography, Computational Seismology, Theoretical Seismology

Scientific paper

We determine finite-frequency sensitivity kernels for seismic interferometry based upon noise cross-correlation measurements. Under the assumptions that noise is spatially uncorrelated but non-uniform, we determine ensemble-averaged cross correlations between synthetic seismograms at two geographically distinct locations. By minimizing a measure of the difference between observed and simulated ensemble cross correlations-subject to the constraint that the simulated wavefield satisfies the seismic wave equation-we obtain ensemble sensitivity kernels. These ensemble kernels reflect the sensitivity of ensemble cross-correlation measurements to variations in model parameters, for example, mass density, shear and compressional wave speeds and the spatial distribution of noise. Ensemble kernels are calculated based upon the interaction between two wavefields: an ensemble forward wavefield and an ensemble adjoint wavefield. To obtain the ensemble forward wavefield, one first calculates a generating wavefield obtained by inserting a signal determined by the characteristics of the noise at the location of the first receiver, saving the results of this calculation at locations where noise is generated, that is, typically on (a portion of) the Earth's surface. Next, one uses this generating wavefield as the source of the ensemble forward wavefield associated with the first receiver. The ensemble adjoint wavefield is obtained by using measurements between simulated and observed ensemble cross correlations as a seismic source located at the second receiver. The interaction between ensemble forward and adjoint wavefields `paints' ensemble sensitivity kernels. We illustrate the construction of ensemble kernels and their nature in two and three dimensions using a spectral-element method. In addition to a `banana-doughnut' feature connecting the two receivers, as in traditional finite-frequency earthquake tomography, some noise cross-correlation sensitivity kernels exhibit hyperbolic `jets' protruding from each receiver in a direction away from the other receiver. Ensemble sensitivity kernels for long-period (T > ~ 50 s) non-uniform noise in global models exhibit sensitivity along the minor and major arcs. These kernels reflect the fact that measurements typically involve long time-series that include multi-orbit surface waves. Like free oscillations, such measurements are sensitive to structure along the great circle through the two receivers. From the perspective of noise cross-correlation tomography, we discuss strategies for inversions in terrestrial and helioseismology.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Noise cross-correlation sensitivity kernels does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Noise cross-correlation sensitivity kernels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Noise cross-correlation sensitivity kernels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1482995

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.