Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2010-11-12
Phys.Rev.D82:113018,2010
Physics
High Energy Physics
High Energy Physics - Phenomenology
5 pages, 5 figures, revtex4-1. v2: updated to consider anisotropic sterile neutrino decay and a way of relaxing the RMC constr
Scientific paper
10.1103/PhysRevD.82.113018
We show that ordinary and radiative muon capture impose stringent constraints on sterile neutrino properties. In particular, we consider a sterile neutrino with a mass between 40 to $80 {\rm MeV}$ that has a large mixing with the muon neutrino and decays predominantly into a photon and light neutrinos due to a large transition magnetic moment. Such a model was suggested as a possible resolution to the puzzle presented by the results of the LSND, KARMEN, and MiniBooNE experiments. We find that the scenario with the radiative decay to massless neutrinos is ruled out by measurements of the radiative muon capture rates at TRIUMF in the relevant mass range by a factor of a few in the squared mixing angle. These constraints are complementary to those imposed by the process of electromagnetic upscattering and de-excitation of beam neutrinos inside the neutrino detectors induced by a large transition magnetic moment. The latter provide stringent constraints on the size of the transitional magnetic moment between muon, electron neutrinos and $N$. We also show that further extension of the model with another massive neutrino in the final state of the radiative decay may be used to bypass the constraints derived in this work.
McKeen David
Pospelov Maxim
No associations
LandOfFree
Muon Capture Constraints on Sterile Neutrino Properties does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Muon Capture Constraints on Sterile Neutrino Properties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Muon Capture Constraints on Sterile Neutrino Properties will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-444830