Physics – Data Analysis – Statistics and Probability
Scientific paper
2007-07-11
Phys. Rev. E 76, 066102 (2007)
Physics
Data Analysis, Statistics and Probability
RevTex 4, 11 pages, 3 figures, 1 table; modest extensions to content
Scientific paper
10.1103/PhysRevE.76.066102
The modularity of a network quantifies the extent, relative to a null model network, to which vertices cluster into community groups. We define a null model appropriate for bipartite networks, and use it to define a bipartite modularity. The bipartite modularity is presented in terms of a modularity matrix B; some key properties of the eigenspectrum of B are identified and used to describe an algorithm for identifying modules in bipartite networks. The algorithm is based on the idea that the modules in the two parts of the network are dependent, with each part mutually being used to induce the vertices for the other part into the modules. We apply the algorithm to real-world network data, showing that the algorithm successfully identifies the modular structure of bipartite networks.
No associations
LandOfFree
Modularity and community detection in bipartite networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Modularity and community detection in bipartite networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modularity and community detection in bipartite networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-435031