Computer Science – Numerical Analysis
Scientific paper
2010-08-20
Computer Science
Numerical Analysis
16 pages, 4 figures, submitted to Mechanics of Materials
Scientific paper
10.1016/j.mechmat.2010.09.006
A constitutive model is developed to predict the viscoelastic response of polyimide resins that are used in high temperature applications. This model is based on a thermodynamic framework that uses the notion that the `natural configuration' of a body evolves as the body undergoes a process and the evolution is determined by maximizing the rate of entropy production in general and the rate of dissipation within purely mechanical considerations. We constitutively prescribe forms for the specific Helmholtz potential and the rate of dissipation (which is the product of density, temperature and the rate of entropy production), and the model is derived by maximizing the rate of dissipation with the constraint of incompressibility, and the reduced energy dissipation equation is also regarded as a constraint in that it is required to be met in every process that the body undergoes. The efficacy of the model is ascertained by comparing the predictions of the model with the experimental data for PMR-15 and HFPE-II-52 polyimide resins.
Karra Satish
Rajagopal K. R.
No associations
LandOfFree
Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-188653