Mercury's exosphere origins and relations to its magnetosphere and surface

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Scientific paper

Mariner 10, the only spacecraft that ever passed close to Mercury, revealed several unexpected characteristics: an intrinsic magnetosphere, the highest mean density of any Solar System terrestrial planet and a very thin non-collisional atmosphere. Mercury's atmosphere is very poorly explored since only three atomic elements, H, He and O, were observed during the three flybys of Mariner 10. The measurements done by radio and solar occultations provided upper limits on the neutral and ion densities. These measurements pointed out the close connection between species in Mercury's exosphere and its surface, which is also the case for the Moon. Mariner 10 observations also characterized the vertical distributions and the day to night contrasts of Mercury's exosphere for its lightest components H and He (Broadfoot, A.L., et al., 1976. Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577 580). More than a decade later, the first observation from a ground-based observatory of Mercury's sodium (Na) exospheric component was reported (Potter, A.E., Morgan, T.H., 1985. Discovery of sodium in the atmosphere of Mercury. Science 229, 651 653). Since then, potassium and more recently calcium have been identified in Mercury's exosphere. The bright Na resonant scattering emission has been often observed since 1985. This large set of observations is now the best source of information on Mercury's exospheric mechanisms of ejection, dynamics, sources and sinks. In particular, several of these observations provided evidence of prompt and delayed effects, both localized and global, for the very inhomogeneous Mercury's Na exosphere. These inhomogenities have been interpreted as the trace of Mercury's magnetosphere solar wind interaction and have highlighted some of the main sources of exospheric material. Some of these features have been also interpreted as the trace of a global dayside to night side circulation of Mercury's exosphere and therefore have highlighted also the relation between exospheric production and upper surface composition. Hopefully, new sets of in situ measurements will be obtained within the next decade thanks to Messenger and Bepi-Colombo missions. Until then, ground-based observations and modelling will remain the only approaches to resolve questions on Mercury's exosphere. Mercury's exospheric composition and structure as they are presently known are described in this paper. The principal models for the main short and long times terms variations and local and global variations of Mercury's exosphere are described. The mechanisms of production and their characteristics are also given. Mercury's exosphere can also be seen as part of the coupled magnetosphere upper surface exosphere system and several of the links between these elements are essential to the interpretation of most of the ground-based observations. The relation between Mercury's planet composition and its exospheric composition is also considered, as is the global recycling, sources and sinks of Mercury's exosphere.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Mercury's exosphere origins and relations to its magnetosphere and surface does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Mercury's exosphere origins and relations to its magnetosphere and surface, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mercury's exosphere origins and relations to its magnetosphere and surface will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1328021

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.