Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2=0.92 and 1.76 Gev2: II. Dispersion Relation Analysis

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 3 figures, to be submitted to PRL

Scientific paper

Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility in the energy domain below pion threshold and in the Delta(1232) resonance region. The data analysis is based on the Dispersion Relation (DR) approach. The electric and magnetic Generalized Polarizabilities (GPs) of the proton and the structure functions Pll-Ptt/epsilon and Plt are determined at four-momentum transfer squared Q2=0.92 and 1.76 GeV2. The DR analysis is consistent with the low-energy expansion analysis. The world data set indicates that neither the electric nor magnetic GP follows a simple dipole form.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2=0.92 and 1.76 Gev2: II. Dispersion Relation Analysis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2=0.92 and 1.76 Gev2: II. Dispersion Relation Analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2=0.92 and 1.76 Gev2: II. Dispersion Relation Analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-656775

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.