Physics – Optics
Scientific paper
Apr 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009mnras.394.1121c&link_type=abstract
Monthly Notices of the Royal Astronomical Society, Volume 394, Issue 3, pp. 1121-1130.
Physics
Optics
13
Atmospheric Effects, Instrumentation: Adaptive Optics, Site Testing
Scientific paper
We present the results of an 18-month study to characterize the optical turbulence in the boundary layer and in the free atmosphere above the summit of Mauna Kea in Hawaii. This survey combined the Slope-Detection and Ranging (SLODAR) and Low-Layer SCIntillation Detection And Ranging (SCIDAR) (LOLAS) instruments into a single manually operated instrument capable of measuring the integrated seeing and the optical turbulence profile within the first kilometre with spatial and temporal resolutions of 40-80 m and 1 min (SLODAR) or 10-20 m and 5 min (LOLAS). The campaign began in the fall of 2006 and observed for roughly 50-60 h per month. The optical turbulence within the boundary layer is found to be confined within an extremely thin layer (<=80 m), and the optical turbulence arising within the region from 80 to 650 m is normally very weak. Exponential fits to the SLODAR profiles give an upper limit on the exponential scaleheight of between 25 and 40 m. The thickness of this layer shows a dependence on the turbulence strength near the ground, and under median conditions the scaleheight is <28 m. The LOLAS profiles show a multiplicity of layers very close to the ground but all within the first 40 m. The free-atmosphere seeing measured by the SLODAR is 0.42 arcsec (median) at 0.5 μm and is, importantly, significantly better than the typical delivered image quality at the larger telescopes on the mountain. This suggests that the current suite of telescopes on Mauna Kea is largely dominated by a very local seeing either from internal seeing, seeing induced by the flow in/around the enclosures, or from an atmospheric layer very close to the ground. The results from our campaign suggest that ground-layer adaptive optics can be very effective in correcting this turbulence and, in principle, can provide very large corrected fields of view on Mauna Kea.
Avila Remy
Aviles Jose Luis
Benigni Sam
Butterley Tim
Chun Mark
No associations
LandOfFree
Mauna Kea ground-layer characterization campaign does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mauna Kea ground-layer characterization campaign, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mauna Kea ground-layer characterization campaign will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1524116