Physics – Mathematical Physics
Scientific paper
2008-09-05
Physics
Mathematical Physics
39 pages; this work constitutes a part of the PhD Thesis by the author
Scientific paper
This paper deals with three technical ingredients of geometry for quantum information. Firstly, we give an algorithm to obtain diagonal basis matrices for submodules of the Z_{d}-module Z_{d}^{n} and we describe the suitable computational basis. This algorithm is set along with the mathematical properties and tools that are needed for symplectic diagonalisation. Secondly, with only symplectic computational bases allowed, we get an explicit description of the Lagrangian submodules of Z_{d}^{2n}. Thirdly, we introduce the notion of a fringe of a Gram matrix and provide an explicit algorithm using it in order to obtain a diagonal basis matrix with respect to a symplectic computational basis whenever possible. If it is possible, we call the corresponding submodule nearly symplectic. We also give an algebraic property in order to single out symplectic submodules from nearly symplectic ones.
No associations
LandOfFree
Matrix reduction and Lagrangian submodules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Matrix reduction and Lagrangian submodules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Matrix reduction and Lagrangian submodules will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-659264