Mass transfer and interfacial properties in two-phase microchannel flows

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Drop-based microfluidic devices are becoming more common, and molecular mass transfer and drop circulation are issues that often affect the performance of such devices. Moreover, interfacial properties and surfactant mass transfer rates govern emulsion behavior. Since these phenomena depend strongly on drop size, measurement methods using small drops and flow typical of applications are desired. Using mineral oil as a continuous phase, water droplets and an alcohol surfactant, we demonstrate here a microfluidic approach to measure the interrelated phenomena of dynamic interfacial tension, surfactant mass transfer and interfacial retardation that employs droplet flows in a microchannel with constrictions/expansions. Interfacial flow is influenced markedly by adsorption of surfactant: severe interfacial retardation (by a factor of 30) is observed at low surfactant concentrations and interface remobilization is observed at higher surfactant concentrations. The interfacial tension is described by Langmuir kinetics and the parameters for interfaces with mineral oil (studied here) compare closely with those previously found at air interfaces. For the conditions explored, the surfactant mass transfer is described well by a mixed kinetic-diffusion limited model, and the desorption rate coefficients are measured to be both approximately 70 s-1. The transition from a diffusion-controlled to mixed diffusion-kinetic mass transfer mechanism predicted with reducing drop size is verified. This experimental approach (i.e. adjustable geometry and drop size and height) can therefore probe interfacial dynamics in simple and complex flow.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Mass transfer and interfacial properties in two-phase microchannel flows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Mass transfer and interfacial properties in two-phase microchannel flows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass transfer and interfacial properties in two-phase microchannel flows will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1723856

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.