Physics
Scientific paper
Dec 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002agufm.p72c..04s&link_type=abstract
American Geophysical Union, Fall Meeting 2002, abstract #P72C-04
Physics
5416 Glaciation, 5460 Physical Properties Of Materials, 5462 Polar Regions, 5464 Remote Sensing
Scientific paper
We present north and south polar thermal inertia and albedo maps derived from MGS TES observations. The maps were derived using the same robust approach developed to make polar thermal and inertia and albedo maps using IRTM observationsby Paige, Bachman, and Keegan (1994) and Paige and Keegan (1994). The data processing approach involved reading TES reduced data records in PDS format using the Vanilla software tool, and sending the data down a processing pipeline that constrains and bins the data, and compares it to the results of a diurnal and seasonal thermal model to obtain the best fit thermal inertia and apparent albedo. To facilitate comparison, the TES maps were created at the same Ls ranges as the published IRTM maps using TES spectral surface temperature results. The north polar maps used TES nadir observations obtained during a 50-day period from Ls 98.39 to Ls 121.25. The south polar maps used TES nadir observations obtained during a 30-day period from Ls 321.58 to 338.07. The creation of these maps employ a basic thermal model that does not include the effects of the atmosphere, as well as a one-dimensional radiative-convective model that does include the effects of the atmosphere. The spatial resolution of the north polar maps is 0.1 degrees of latitude and 1.0 degrees of longitude. The spatial resolution of the south polar maps is 2 degrees of latitude and 2 degrees of longitude. The TES north polar maps show the residual cap area in significantly greater detail than has been available previously. The IRTM maps showed that the north polar sand sea that surrounds the cap has unusually low thermal inertia. The TES maps confirm this conclusion, but also show that the dark renetrant features in chama boreal and elsewhere on the cap also have low thermal inertias. This strongly supports the proposal that these dark rentrants are the sources of the dune material. The TES maps also show that the darker layered deposits which are found at the periphery of the cap have high thermal inertias, just like the brighter water ice deposits elsewhere on the cap. This strongly supports the conclusion that even the darker north polar layered deposits are mostly ice. The TES south polar maps show similar features to those observed by IRTM, including the presence of a low thermal inertia region centered on the south pole, and a region of anomalously high apparent albedo southward of 78 degrees latitude. References: Paige, D. A., J. E. Bachman and K. D. Keegan, Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region, J. Geophys. Res. 99, 24,959-25,991, 1994. Paige, D. A. and K. D. Keegan, Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. South polar region, J. Geophys. Res. 99, 24,993-26,013, 1994.
Paige David A.
Scherbenski J. M.
No associations
LandOfFree
Mars Polar Thermal Inertia and Albedo Properties Using TES Data does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mars Polar Thermal Inertia and Albedo Properties Using TES Data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mars Polar Thermal Inertia and Albedo Properties Using TES Data will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1892420