Physics
Scientific paper
Jun 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008jgre..11300a03a&link_type=abstract
Journal of Geophysical Research, Volume 113, Issue E6, CiteID E00A03
Physics
24
Planetary Sciences: Solid Surface Planets: Surface Materials And Properties, Planetary Sciences: Solid Surface Planets: Remote Sensing, Planetary Sciences: Solid Surface Planets: Polar Regions, Planetary Sciences: Solid Surface Planets: Erosion And Weathering
Scientific paper
To ensure a successful touchdown and subsequent surface operations, the Mars Exploration Program 2007 Phoenix Lander must land within 65° to 72° north latitude, at an elevation less than -3.5 km. The landing site must have relatively low wind velocities and rock and slope distributions similar to or more benign than those found at the Viking Lander 2 site. Also, the site must have a soil cover of at least several centimeters over ice or icy soil to meet science objectives of evaluating the environmental and habitability implications of past and current near-polar environments. The most challenging aspects of site selection were the extensive rock fields associated with crater rims and ejecta deposits and the centers of polygons associated with patterned ground. An extensive acquisition campaign of Odyssey Thermal Emission Imaging Spectrometer predawn thermal IR images, together with ~0.31 m/pixel Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment images was implemented to find regions with acceptable rock populations and to support Monte Carlo landing simulations. The chosen site is located at 68.16° north latitude, 233.35° east longitude (areocentric), within a ~50 km wide (N-S) by ~300 km long (E-W) valley of relatively rock-free plains. Surfaces within the eastern portion of the valley are differentially eroded ejecta deposits from the relatively recent ~10-km-wide Heimdall crater and have fewer rocks than plains on the western portion of the valley. All surfaces exhibit polygonal ground, which is associated with fracture of icy soils, and are predicted to have only several centimeters of poorly sorted basaltic sand and dust over icy soil deposits.
Adams Danielle
Arvidson Ray
Bonfiglio G.
Christensen Paul
Cull Selby
No associations
LandOfFree
Mars Exploration Program 2007 Phoenix landing site selection and characteristics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mars Exploration Program 2007 Phoenix landing site selection and characteristics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mars Exploration Program 2007 Phoenix landing site selection and characteristics will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1572053