Mathematics – Probability
Scientific paper
2009-07-02
Annals of Applied Probability 2011, Vol. 21, No. 5, 1694-1748
Mathematics
Probability
Published in at http://dx.doi.org/10.1214/10-AAP729 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Inst
Scientific paper
10.1214/10-AAP729
A voter sits on each vertex of an infinite tree of degree $k$, and has to decide between two alternative opinions. At each time step, each voter switches to the opinion of the majority of her neighbors. We analyze this majority process when opinions are initialized to independent and identically distributed random variables. In particular, we bound the threshold value of the initial bias such that the process converges to consensus. In order to prove an upper bound, we characterize the process of a single node in the large $k$-limit. This approach is inspired by the theory of mean field spin-glass and can potentially be generalized to a wider class of models. We also derive a lower bound that is nontrivial for small, odd values of $k$.
Kanoria Yashodhan
Montanari Andrea
No associations
LandOfFree
Majority dynamics on trees and the dynamic cavity method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Majority dynamics on trees and the dynamic cavity method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Majority dynamics on trees and the dynamic cavity method will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-730852